https://www.selleckchem.com/products/c-178.html
Combinatorial fusion analysis (CFA) is an approach for combining multiple scoring systems using the rank-score characteristic function and cognitive diversity measure. One example is to combine diverse machine learning models to achieve better prediction quality. In this work, we apply CFA to the synthesis of metal halide perovskites containing organic ammonium cations via inverse temperature crystallization. Using a data set generated by high-throughput experimentation, four individual models (support vector machines, random forests, wei