https://www.selleckchem.com/products/plx51107.html
Since accurate quantification of 2-deoxy-2-18F-fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) requires dynamic acquisition with arterial input function, more practical semi-quantitative (static) approaches are often preferred. However, static standardized uptake values (SUV) are typically biased due to large variations in body weight (BW) occurring over time in animal studies. This study aims to improve static [18F]FDG PET SUV quantification by better accounting for BW variations in rats. We performed dynamic [18F]FDG P