https://www.selleckchem.com/pr....oducts/polybrene-hex
e to create machine-learning models that can serve as early warning systems to predict patients at risk of acquiring urinary tract infections during admission. The entry model and the HA-UTI models perform with a high ROC-index indicating a sufficient sensitivity and specificity, which may make both models instrumental in individualized prevention of UTI in hospitalized patients. The favored machine-learning methodology is Decision Trees to ensure the most transparent results and to increase clinical understand