https://www.selleckchem.com/pr....oducts/ziritaxestat.
Realistic image generation is valuable in dental medicine, but still challenging for generative adversarial networks (GANs), which require large amounts of data to overcome the training instability. Thus, we generated lateral cephalogram X-ray images using a deep-learning-based progressive growing GAN (PGGAN). The quality of generated images was evaluated by three methods. First, signal-to-noise ratios of real/synthesized images, evaluated at the posterior arch region of the first cervical vertebra, showed no statistically signific